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LElTER TO THE EDITOR 

Scaling properties of a transformation defined on cellular 
automaton rules 
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Magnttique, Centre d’Etudes NuclCaires de Saclay, 91 191 Gif-sur-Yvette Cedex, France 
and Department of Physics, University of Illinois, Chicago, IL  60680, USA 

Received 3 February 1989 

Abstract. A one-parameter family of transformations defined on the set of all one- 
dimensional cellular automata is studied. The class of a given cellular automaton is 
unchanged under the set of these transformations. For class 3 cellular automata, trans- 
formed statistical quantities satisfy simple scaling properties. 

Cellular automata (CA) are discrete dynamical systems. They consist of a lattice of 
sites, each taking on one of the values 0, 1, . . . , k - 1. The values of the sites evolve 
synchronously in discrete time steps according to a definite rule. In this letter we shall 
consider one-dimensional CA with k = 2. The value site i at time r is denoted sf,  and 
the rule f is of the form 

I - I  s f  =f(sfIi, sfr!,,, . . . , S i + , )  

where the parameter r is called the range of the rule. The value of site i at time t is 
therefore determined by the values of the sites of a neighbourhood containing 2r + 1 
sites at time t - 1. 

Based on investigation of a large sample of CA, Wolfram (1984) has shown that 
probably all CA fall into four qualitative classes. Class 1 CA evolve, from almost all 
initial states, to a unique homogeneous state in which all sites have the same value. 
Class 2 CA yield separated simple stable or periodic structures. Class 3 CA exhibit 
chaotic patterns. The statistical properties of these patterns are typically the same for 
almost all initial states. In particular, the density of non-zero sites tends to a fixed 
value. The evolution of class 4 CA leads to complex localised or propagating structures. 

In what follows a transformation Tb, characterised by a positive odd integer b, is 
defined. Numerical simulations show that the CA evolving according to the rule f and 
the transformed rules Tbf ( b  = 3,5, . . .) belong to the same class. 

In the particular case of class 3 CA, for a given rule f the probability distribution 
of the asymptotic density of non-zero sites of CA evolving according to rules T b f  

( b  = 1,3,5, . . .) exhibits a simple scaling property. 
In order to build up Tb, consider the set 

{ s j - ( b - 1 ) , 2 ,  s j - ( b - 3 ) / 2 ,  * * * ,  s j + ( b - 1 ) / 2 )  

which forms a block of length b ( b  is odd) centred at j .  With a block associate an 
integral valued variable Bj, called a block variable, such that 

1 if S h , j  > b / 2  
0 if S b . j  < b / 2  

B j = {  
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where 

sb. j  = s j - ( b - 1 ) / 2 + s j - ( b - 3 ) / 2 +  * . * + s j + ( b - - 1 ) / 2 .  

With a rulef, with range r, associate a rule Tbf  with range rb+$(b  - l ) ,  i.e. involving 
a neighbourhood of ( 2 r + l ) b  sites, defined as follows. Divide the ( 2 r + l ) b  sites in 
2r + 1 blocks of length b. For each block determine the value of the corresponding 
block variable at time t - 1 .  The value at time t of site i given by rule Tbf  is, by 
definition, given by rule f applied to the block variables. 

Consider, for example, the range-one CA evolving according to rule 18 of Wolfram 
(1983). The corresponding function f is such that 

f ( x l  9 x 2  9 x 3 )  = 1 i f f ( x , , x 2 , x 3 ) = ( 0 , 0 , 1 )  or ( l ,O ,O) .  

For b = 3 the function T3 f is such that 

T 3 f ( x 1  9 x 2 , .  . . 3 x 9 ) =  1 

iff 

x 1  + x2 + x3 < $ x,+ xg + xg <; x7 + x8 + xg > $ 
or 

x 1  + x2+ x3 >; xq+ x5 + x ,  <; x7 + x8+ x9 < 1. 
A thorough investigation of all legal range-one and totalistic range-two CA shows 

that the transformation Tb leaves the class unchanged. This result, however, is correct 
only if the number of sites N of the lattice is large. If this is not the case, i.e. if the 
ratio b / N  is typically greater than a few per cent, then legal class 2, class 3, and class 
4 CA behave, after transformation, as class 1 CA. 

Figures 1 and 2 represent, respectively, the evolution of typical class 3 and class 4 
CA ( r  = 2 totalistic rules 30 and 52 of Wolfram (1984)) for different values of b. The 
value 0 (respectively 1 )  is represented by a black (respectively white) square. Initial 
configurations are disordered, the values 0 and 1 having the same probability. In both 

Figure 1. Evolution of class 3 CA with N = 200 b. Only the evolution of the first 200 sites 
is represented. ( a )  k = 2, r = 2 totalistic rule 30, ( b )  transformed rule for b = 5. 
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((1) lbl 

Figure 2. Evolution of a class 4 CA with N = 200 b. Only the evolution of the first 200 
sites is represented. ( a )  k = 2, r = 2 totalistic rule 52, ( b )  transformed rule for b = 5 .  

cases, the ratio b / N  should not be greater than roughly 3% to leave the respective 
classes unchanged. The existence, for legal CA, of a ‘critical’ ratio above which there 
is a ‘transition’ to a class 1 CA is due to the increase of the fluctuations with b / N  
which drives the system into an absorbing state. 

The spatio-temporal patterns of figures 1 and 2 for b >  1 seem to be stretched in 
the space direction when compared with the b = 1 pattern. After a contraction by a 
factor b in the space direction (figure 3) the patterns look similar to those obtained 
for b = 1. 

In the particular case of class 3 CA, numerous simulations show that the asymptotic 
density of sites with a non-zero value c is invariant under the transformation Tb. c is 
often close to l / k  (Wolfram 1984). To give clear evidence of the invariance of c under 

lo1 b )  

Figure 3. Patterns contracted in the space direction by a factor equal to b with N = 200 b. 
( a )  Rule 30, b = 5 ,  (b)  rule 52 ,  b = 5 .  
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transformation Tb, a CA whose asymptotic density is very different from $ should be 
studied, and this is why the k = 2, r = 1 CA evolving according to rule 18 has been 
chosen. Its asymptotic density is exactly equal to i. 

The parameter b characterising the transformed rule Tb f defines a characteristic 
length and it is not very surprising that quantities like the fluctuations of the asymptotic 
density which, for b = 1, scale as 1/ N have been found to scale as b/  N. More precisely, 
the probability distribution of the asymptotic density c is a function of c and the ratio 
b / N .  Figure 4 illustrates this result; it represents the histogram of c, 
and the corresponding Gaussian distribution with the same mean c, and the same 
variance u. 
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Figure 4. Histogram of the asymptotic density c of ( a )  the k = 2 ,  r =  1 CA rule 18 with 
N = 5000, c, = 0.250 87, 0 = 4.9953 x ( 6 )  the transformed rule for b = 5 with N = 
5000 b, c, = 0.250 07, U = 4.9370 x 

These results suggest that in the N = 00 limit (and b / N  small) all the rules Tbf for 
b = 1,3,5,. . . lead qualitatively and quantitatively to similar evolutions. 

It is a pleasure to thank my colleagues R Bidaux and H Chat6 for their very interesting 
comments. 
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