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LETTER TO THE EDITOR

Scaling properties of a transformation defined on cellular
automaton rules
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and Department of Physics, University of Illinois, Chicago, IL 60680, USA

Received 3 February 1989

Abstract. A one-parameter family of transformations defined on the set of all one-
dimensional cellular automata is studied. The class of a given cellular automaton is
unchanged under the set of these transformations. For class 3 cellular automata, trans-
formed statistical quantities satisfy simple scaling properties.

Cellular automata (ca) are discrete dynamical systems. They consist of a lattice of
sites, each taking on one of the values 0, 1,..., k—1. The values of the sites evolve
synchronously in discrete time steps according to a definite rule. In this letter we shall
consider one-dimensional ca with k =2. The value site i at time ¢ is denoted s}, and
the rule f is of the form

t __ -1 t—1 —1
S —'f(si—ry Sicrttse s Sitr

where the parameter r is called the range of the rule. The value of site i at time ¢ is
therefore determined by the values of the sites of a neighbourhood containing 2r+1
sites at time ¢ —1.

Based on investigation of a large sample of ca, Wolfram (1984) has shown that
probably all ca fall into four qualitative classes. Class 1 cA evolve, from almost all
initial states, to a unique homogeneous state in which all sites have the same value.
Class 2 ca yield separated simple stable or periodic structures. Class 3 ca exhibit
chaotic patterns. The statistical properties of these patterns are typically the same for
almost all initial states. In particular, the density of non-zero sites tends to a fixed
value. The evolution of class 4 ca leads to complex localised or propagating structures.

In what follows a transformation T, characterised by a positive odd integer b, is
defined. Numerical simulations show that the ca evolving according to the rule f and
the transformed rules T, f (b=3,5,...) belong to the same class.

In the particular case of class 3 ca, for a given rule f the probability distribution
of the asymptotic density of non-zero sites of cA evolving according to rules T, f
(b=1,3,5,...) exhibits a simple scaling property.

In order to build up T,, consider the set

{8j-b-1/2s Sj=b-3)/20 - - - 5 Sj+(6-1)/2}
which forms a block of length b (b is odd) centred at j. With a block associate an
integral valued variable B;, called a block variable, such that
{1 if S,,;>b/2

B.=
0 if S, < b/2
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where

Sbj = Sj—b-1y72t Si—b-ns2F* * *F Sjao-1)/2-

With a rule f, with range r, associate a rule T, f with range rb+3(b —1), i.e. involving
a neighbourhood of (2r+1)b sites, defined as follows. Divide the (2r+1)b sites in
2r+1 blocks of length b. For each block determine the value of the corresponding
block variable at time r—1. The value at time ¢ of site i given by rule T,f is, by
definition, given by rule f applied to the block variables.

Consider, for example, the range-one ca evolving according to rule 18 of Wolfram
(1983). The corresponding function f is such that

f(xl,x2’x3)=l

For b =3 the function T;f is such that

iff

or

-

Time

‘ff (xl, X2, x3) = (0’ 01 1) or (la 0, 0)

Tf(x), %2,..., %) =1
X+ X+ x,<3 Xot+xs5+x5<3 X7+ Xg+ Xg >3
x1+x2+x3>% x4+x5+x6<% x7+x8+x9<%.

A thorough investigation of all legal range-one and totalistic range-two ca shows
that the transformation T, leaves the class unchanged. This result, however, is correct
only if the number of sites N of the lattice is large. If this is not the case, i.e. if the
ratio b/ N is typically greater than a few per cent, then legal class 2, class 3, and class
4 cA behave, after transformation, as class 1 ca.

Figures 1 and 2 represent, respectively, the evolution of typical class 3 and class 4
caA (r=2 totalistic rules 30 and 52 of Wolfram (1984)) for different values of b. The
value 0 (respectively 1) is represented by a black (respectively white) square. Initial
configurations are disordered, the values 0 and 1 having the same probability. In both
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Figure 1. Evolution of class 3 cA with N =200 b. Only the evolution of the first 200 sites
is represented. (a) k=2, r =2 totalistic rule 30, (b) transformed rule for b =5.
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Time —»

Figure 2. Evolution of a class 4 ca with N =200 b. Only the evolution of the first 200
sites is represented. (a) k =2, r =2 totalistic rule 52, (b) transformed rule for b=>5.

cases, the ratio b/ N should not be greater than roughly 3% to leave the respective
classes unchanged. The existence, for legal ca, of a ‘critical’ ratio above which there
is a ‘transition’ to a class 1 ca is due to the increase of the fluctuations with b/ N
which drives the system into an absorbing state.

The spatio-temporal patterns of figures 1 and 2 for b> 1 seem to be stretched in
the space direction when compared with the b =1 pattern. After a contraction by a
factor b in the space direction (figure 3) the patterns look similar to those obtained
for b=1.

In the particular case of class 3 cA, numerous simulations show that the asymptotic
density of sites with a non-zero value c is invariant under the transformation T,. c is
often close to 1/ k (Wolfram 1984). To give clear evidence of the invariance of ¢ under

Time —»
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Figure 3. Patterns contracted in the space direction by a factor equal to b with N =200 b.
(a) Rule 30, b=5, (b) rule 52, b=>5.
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transformation T,, a cA whose asymptotic density is very different from % should be
studied, and this is why the k=2, r=1 ca evolving according to rule 18 has been
chosen. Its asymptotic density is exactly equal to 4.

The parameter b characterising the transformed rule T,f defines a characteristic
length and it is not very surprising that quantities like the fluctuations of the asymptotic
density which, for b =1, scale as 1/ N have been found to scale as b/ N. More precisely,
the probability distribution of the asymptotic density c is a function of ¢ and the ratio
b/N. Figure 4 illustrates this result; it represents the histogram of ¢,
and the corresponding Gaussian distribution with the same mean ¢, and the same
variance o.
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Figure 4. Histogram of the asymptotic density ¢ of (a) the k=2, r=1 CA rule 18 with
N =5000, ¢, =0.25087, o =4.9953x 10>, (b) the transformed rule for b=35 with N =
5000 b, c,, =0.25007, o =4.9370x 107>,

These results suggest that in the N = oo limit (and b/ N small) all the rules T, f for
b=1,3,5,...lead qualitatively and quantitatively to similar evolutions.

It is a pleasure to thank my colleagues R Bidaux and H Chaté for their very interesting
comments.
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