Scaling properties of a transformation defined on cellular automaton rules

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 22 L393
(http://iopscience.iop.org/0305-4470/22/9/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 13:58

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Scaling properties of a transformation defined on cellular automaton rules

N Boccara
Département de Physique Générale, Service de Physique du Solide et de Résonance Magnétique, Centre d'Etudes Nucléaires de Saclay, 91191 Gif-sur-Yvette Cedex, France and Department of Physics, University of Illinois, Chicago, IL 60680, USA

Received 3 February 1989

Abstract

A one-parameter family of transformations defined on the set of all onedimensional cellular automata is studied. The class of a given cellular automaton is unchanged under the set of these transformations. For class 3 cellular automata, transformed statistical quantities satisfy simple scaling properties.

Cellular automata (CA) are discrete dynamical systems. They consist of a lattice of sites, each taking on one of the values $0,1, \ldots, k-1$. The values of the sites evolve synchronously in discrete time steps according to a definite rule. In this letter we shall consider one-dimensional CA with $k=2$. The value site i at time t is denoted s_{i}^{t}, and the rule f is of the form

$$
s_{i}^{t}=f\left(s_{i-r}^{t-1}, s_{i-r+1}^{i-1}, \ldots, s_{i+r}^{i-1}\right)
$$

where the parameter r is called the range of the rule. The value of site i at time t is therefore determined by the values of the sites of a neighbourhood containing $2 r+1$ sites at time $t-1$.

Based on investigation of a large sample of CA, Wolfram (1984) has shown that probably all CA fall into four qualitative classes. Class 1 CA evolve, from almost all initial states, to a unique homogeneous state in which all sites have the same value. Class 2 CA yield separated simple stable or periodic structures. Class 3 cA exhibit chaotic patterns. The statistical properties of these patterns are typically the same for almost all initial states. In particular, the density of non-zero sites tends to a fixed value. The evolution of class 4 CA leads to complex localised or propagating structures.

In what follows a transformation T_{b}, characterised by a positive odd integer b, is defined. Numerical simulations show that the ca evolving according to the rule f and the transformed rules $T_{b} f(b=3,5, \ldots)$ belong to the same class.

In the particular case of class 3 cA , for a given rule f the probability distribution of the asymptotic density of non-zero sites of ca evolving according to rules $T_{b} f$ ($b=1,3,5, \ldots$) exhibits a simple scaling property.

In order to build up T_{b}, consider the set

$$
\left\{s_{j-(b-1) / 2}, s_{j-(b-3) / 2}, \ldots, s_{j+(b-1) / 2}\right\}
$$

which forms a block of length b (b is odd) centred at j. With a block associate an integral valued variable B_{j}, called a block variable, such that

$$
B_{j}= \begin{cases}1 & \text { if } S_{b, j}>b / 2 \\ 0 & \text { if } S_{b, j}<b / 2\end{cases}
$$

where

$$
S_{b, j}=s_{j-(b-1) / 2}+s_{j-(b-3) / 2}+\cdots+s_{j+(b-1) / 2} .
$$

With a rule f, with range r, associate a rule $T_{b} f$ with range $r b+\frac{1}{2}(b-1)$, i.e. involving a neighbourhood of $(2 r+1) b$ sites, defined as follows. Divide the $(2 r+1) b$ sites in $2 r+1$ blocks of length b. For each block determine the value of the corresponding block variable at time $t-1$. The value at time t of site i given by rule $T_{b} f$ is, by definition, given by rule f applied to the block variables.

Consider, for example, the range-one ca evolving according to rule 18 of Wolfram (1983). The corresponding function f is such that

$$
f\left(x_{1}, x_{2}, x_{3}\right)=1 \quad \text { iff }\left(x_{1}, x_{2}, x_{3}\right)=(0,0,1) \text { or }(1,0,0)
$$

For $b=3$ the function $T_{3} f$ is such that

$$
T_{3} f\left(x_{1}, x_{2}, \ldots, x_{9}\right)=1
$$

iff

$$
x_{1}+x_{2}+x_{3}<\frac{3}{2} \quad x_{4}+x_{5}+x_{6}<\frac{3}{2} \quad x_{7}+x_{8}+x_{9}>\frac{3}{2}
$$

or

$$
x_{1}+x_{2}+x_{3}>\frac{3}{2} \quad x_{4}+x_{5}+x_{6}<\frac{3}{2} \quad x_{7}+x_{8}+x_{9}<\frac{3}{2} .
$$

A thorough investigation of all legal range-one and totalistic range-two ca shows that the transformation T_{b} leaves the class unchanged. This result, however, is correct only if the number of sites N of the lattice is large. If this is not the case, i.e. if the ratio b / N is typically greater than a few per cent, then legal class 2 , class 3 , and class 4 cA behave, after transformation, as class 1 cA .

Figures 1 and 2 represent, respectively, the evolution of typical class 3 and class 4 CA ($r=2$ totalistic rules 30 and 52 of Wolfram (1984)) for different values of b. The value 0 (respectively 1) is represented by a black (respectively white) square. Initial configurations are disordered, the values 0 and 1 having the same probability. In both

Figure 1. Evolution of class 3 CA with $N=200 \mathrm{~b}$. Only the evolution of the first 200 sites is represented. (a) $k=2, r=2$ totalistic rule $30,(b)$ transformed rule for $b=5$.

Figure 2. Evolution of a class 4 CA with $N=200 \mathrm{~b}$. Only the evolution of the first 200 sites is represented. (a) $k=2, r=2$ totalistic rule 52 , (b) transformed rule for $b=5$.
cases, the ratio b / N should not be greater than roughly 3% to leave the respective classes unchanged. The existence, for legal ca, of a 'critical' ratio above which there is a 'transition' to a class 1 CA is due to the increase of the fluctuations with b / N which drives the system into an absorbing state.

The spatio-temporal patterns of figures 1 and 2 for $b>1$ seem to be stretched in the space direction when compared with the $b=1$ pattern. After a contraction by a factor b in the space direction (figure 3) the patterns look similar to those obtained for $b=1$.

In the particular case of class 3 CA , numerous simulations show that the asymptotic density of sites with a non-zero value c is invariant under the transformation $T_{b} . c$ is often close to $1 / k$ (Wolfram 1984). To give clear evidence of the invariance of c under

Figure 3. Patterns contracted in the space direction by a factor equal to b with $N=200 b$. (a) Rule $30, b=5$, (b) rule $52, b=5$.
transformation T_{b}, a CA whose asymptotic density is very different from $\frac{1}{2}$ should be studied, and this is why the $k=2, r=1$ CA evolving according to rule 18 has been chosen. Its asymptotic density is exactly equal to $\frac{1}{4}$.

The parameter b characterising the transformed rule $T_{b} f$ defines a characteristic length and it is not very surprising that quantities like the fluctuations of the asymptotic density which, for $b=1$, scale as $1 / N$ have been found to scale as b / N. More precisely, the probability distribution of the asymptotic density c is a function of c and the ratio b / N. Figure 4 illustrates this result; it represents the histogram of c, and the corresponding Gaussian distribution with the same mean c_{m} and the same variance σ.

Figure 4. Histogram of the asymptotic density c of (a) the $k=2, r=1$ CA rule 18 with $N=5000, c_{m}=0.25087, \sigma=4.9953 \times 10^{-3} ;(b)$ the transformed rule for $b=5$ with $N=$ $5000 b, c_{m}=0.25007, \sigma=4.9370 \times 10^{-3}$.

These results suggest that in the $N=\infty$ limit (and b / N small) all the rules $T_{b} f$ for $b=1,3,5, \ldots$ lead qualitatively and quantitatively to similar evolutions.

It is a pleasure to thank my colleagues R Bidaux and H Chaté for their very interesting comments.

References

